0%

【Shiro 自学笔记六】Shiro 的默认缓存机制和 Redis 实现缓存

上一期我们实现了登录验证,然而,每次登录 Shiro 都需要去查询一次数据库,而查询数据库是极其耗费资源的,因此,我们需要引入缓存来减小资源开支。

Shiro 的登录验证机制

我们给 Service 层加入日志打印,再行测试:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
@Service
public class UserServiceImpl implements UserService {

@Autowired
private UserDao userDao;

@Override
public void save(User user) {
System.out.println("[ INFO ] User " + user.getUsername() + " saved.");
userDao.save(user);
}

@Override
public User getUserByUsername(String username) {
System.out.println("[ INFO ] User " + username + " was found.");
return userDao.findByUsername(username);
}
}

运行:

1
2
3
[ INFO ] User koorye was found.
[ INFO ] User koorye was found.
[ INFO ] User koorye was found.

结果发现,每刷新一次登录页面,Shiro 都会查询一次数据库,我们有必要使用缓存来减小开支。

Shiro 的默认缓存机制

Shiro 默认使用 EhCache 完成缓存。

导入依赖

1
2
3
4
5
<dependency>
<groupId>org.apache.shiro</groupId>
<artifactId>shiro-ehcache</artifactId>
<version>1.5.3</version>
</dependency>

配置 Realm

在配置类中修改 Realm 的配置,增加缓存管理器:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
@Bean(name = "realm")
public UserRealm userRealm() {
HashedCredentialsMatcher matcher = new HashedCredentialsMatcher();
matcher.setHashAlgorithmName("md5");
matcher.setHashIterations(1024);

UserRealm userRealm = new UserRealm();
userRealm.setCredentialsMatcher(matcher);

userRealm.setCacheManager(new EhCacheManager()); // 配置缓存管理器
userRealm.setCachingEnabled(true); // 启用全局缓存
userRealm.setAuthenticationCachingEnabled(true); // 启用登录验证缓存
userRealm.setAuthorizationCachingEnabled(true); // 启用授权认证缓存
userRealm.setAuthenticationCacheName("authentication_cache"); // 为登录验证缓存命名
userRealm.setAuthorizationCacheName("authorization_cache"); // 为授权认证缓存命名

return userRealm;
}

到这里 Shiro 的缓存就配置完成,非常简单。

我们来测试一下:

1
[ INFO ] User koorye was found.

无论登录页面刷新多少次,除了第一次需要访问数据库之外,只要用户没有登出,其余登录操作只需访问缓存,而不用访问数据库。

Redis 实现缓存

EhCache 可以非常容易的实现 Shiro 缓存,然而它存在一些缺陷,比如不能持久化、数据不容易查看等。

因此,将 EhCache 换成 Redis 是一种很好的方案。

导入依赖

1
2
3
4
5
<!-- Spring Data Redis -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>

修改配置

如果你的 Redis 设有密码,需要配置密码:

1
2
3
spring.redis.port=6379
spring.redis.password=root
spring.redis.database=0

配置 Redis 序列化

新建一个 RedisConfig 配置类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
package org.koorye.config;

import org.springframework.boot.autoconfigure.AutoConfigureAfter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.StringRedisSerializer;

@Configuration
@AutoConfigureAfter(ShiroLifecycleBeanPostProcessorConfig.class)
public class RedisConfig {
@Bean(name = "redis")
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
redisTemplate.setConnectionFactory(redisConnectionFactory);

redisTemplate.setKeySerializer(new StringRedisSerializer());
redisTemplate.setHashKeySerializer(new StringRedisSerializer());

return redisTemplate;
}
}

Key 使用字符串序列化,Value 不配置,代表默认序列化。

要实现默认序列化,我们需要继承序列化 Serializable 接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
@NoArgsConstructor
@Getter
@Setter
@Accessors(chain = true)
@Entity
@Table(name = "t_user")
public class User implements Serializable {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
@Column(name = "id")
private int id;

@Column(name = "username")
private String username;

@Column(name = "password")
private String password;

@Override
public String toString() {
return "ID: " + id + ", username: " + username + ", password: " + password;
}
}

同时,Shiro 的盐并不具有序列化功能,我们需要重新写一个盐。

复制 SimpleByteSource 的所有代码,修改类名,并继承序列化接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
package org.koorye.component;

import java.io.File;
import java.io.InputStream;
import java.io.Serializable;
import java.util.Arrays;
import org.apache.shiro.codec.Base64;
import org.apache.shiro.codec.CodecSupport;
import org.apache.shiro.codec.Hex;
import org.apache.shiro.util.ByteSource;

public class SerializableByteSource implements ByteSource, Serializable {
private final byte[] bytes;
private String cachedHex;
private String cachedBase64;

public SerializableByteSource(byte[] bytes) {
this.bytes = bytes;
}

public SerializableByteSource(char[] chars) {
this.bytes = CodecSupport.toBytes(chars);
}

public SerializableByteSource(String string) {
this.bytes = CodecSupport.toBytes(string);
}

public SerializableByteSource(ByteSource source) {
this.bytes = source.getBytes();
}

public SerializableByteSource(File file) {
this.bytes = (new SerializableByteSource.BytesHelper()).getBytes(file);
}

public SerializableByteSource(InputStream stream) {
this.bytes = (new SerializableByteSource.BytesHelper()).getBytes(stream);
}

public static boolean isCompatible(Object o) {
return o instanceof byte[] || o instanceof char[] || o instanceof String || o instanceof ByteSource || o instanceof File || o instanceof InputStream;
}

public byte[] getBytes() {
return this.bytes;
}

public boolean isEmpty() {
return this.bytes == null || this.bytes.length == 0;
}

public String toHex() {
if (this.cachedHex == null) {
this.cachedHex = Hex.encodeToString(this.getBytes());
}

return this.cachedHex;
}

public String toBase64() {
if (this.cachedBase64 == null) {
this.cachedBase64 = Base64.encodeToString(this.getBytes());
}

return this.cachedBase64;
}

public String toString() {
return this.toBase64();
}

public int hashCode() {
return this.bytes != null && this.bytes.length != 0 ? Arrays.hashCode(this.bytes) : 0;
}

public boolean equals(Object o) {
if (o == this) {
return true;
} else if (o instanceof ByteSource) {
ByteSource bs = (ByteSource)o;
return Arrays.equals(this.getBytes(), bs.getBytes());
} else {
return false;
}
}

private static final class BytesHelper extends CodecSupport {
private BytesHelper() {
}

public byte[] getBytes(File file) {
return this.toBytes(file);
}

public byte[] getBytes(InputStream stream) {
return this.toBytes(stream);
}
}
}

于是我们的 Realm 加盐可以更换成:

1
2
3
4
5
return new SimpleAuthenticationInfo(
authenticationToken.getPrincipal(),
user.getPassword(),
new SerializableByteSource("koorye_love_md5"),
this.getName());

编写 Service 层

首先来实现一些 Redis 的功能。

接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package org.koorye.service;

import java.util.Collection;
import java.util.Set;

public interface RedisService {
void putHash(String hashName, String key, Object value);

Object getHashValueByKey(String hashName, String key);

void removeHashKey(String hashName, String key);

void removeHash(String hashName);

int sizeHash(String hashName);

Set<Object> keysHash(String hashName);

Collection<Object> valuesHash(String hashName);
}

实现类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
package org.koorye.service;

import org.springframework.context.annotation.Lazy;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.Collection;
import java.util.Set;

@Service
@Lazy
public class RedisServiceImpl implements RedisService {
@Resource(name = "redis")
private RedisTemplate<String, Object> redisTemplate;

@Override
public void putHash(String hashName, String key, Object value) {
redisTemplate.opsForHash().put(hashName, key, value);
}

@Override
public Object getHashValueByKey(String hashName, String key) {
return redisTemplate.opsForHash().get(hashName, key);
}

@Override
public void removeHashKey(String hashName, String key) {
redisTemplate.opsForHash().delete(hashName, key);
}

@Override
public void removeHash(String hashName) {
redisTemplate.delete(hashName);
}

@Override
public int sizeHash(String hashName) {
return redisTemplate.opsForHash().size(hashName).intValue();
}

@Override
public Set<Object> keysHash(String hashName) {
return redisTemplate.opsForHash().keys(hashName);
}

@Override
public Collection<Object> valuesHash(String hashName) {
return redisTemplate.opsForHash().values(hashName);
}
}

配置 Redis 缓存

我们自定义的缓存需要实现 Shiro 提供的 Cache<K, V> 接口。

我们来实现一个无参构造和有参构造,并通过 RedisTemplate 实现缓存的 CRUD 操作,存储时采用哈希表。

  • 表名:缓存的名字
  • 键:缓存的用户名
  • 值:缓存的信息

为什么需要一个参数为 String 的有参构造呢?这里的配置我们稍后可以看到:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
package org.koorye.component;

import lombok.Getter;
import lombok.Setter;
import org.apache.shiro.cache.Cache;
import org.apache.shiro.cache.CacheException;
import org.koorye.service.RedisServiceImpl;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

import java.util.Collection;
import java.util.Set;

@Repository
@SuppressWarnings(value = "unchecked")
@Getter
@Setter
public class RedisCache<K, V> implements Cache<K, V> {
@Autowired
private RedisServiceImpl redisService;

private String cacheName;

@Override
public V get(K k) throws CacheException {
return (V) redisService.getHashValueByKey(cacheName, k.toString());
}

@Override
public V put(K k, V v) throws CacheException {
redisService.putHash(cacheName, k.toString(), v);
return v;
}

@Override
public V remove(K k) throws CacheException {
V value = (V) redisService.getHashValueByKey(cacheName, k.toString());
redisService.removeHashKey(cacheName, k.toString());
return value;
}

@Override
public void clear() throws CacheException {
redisService.removeHash(cacheName);
}

@Override
public int size() {
return redisService.sizeHash(cacheName);
}

@Override
public Set<K> keys() {
return (Set<K>) redisService.keysHash(cacheName);
}

@Override
public Collection<V> values() {
return (Collection<V>) redisService.valuesHash(cacheName);
}
}

配置 Redis 缓存管理器

接下来自定义 Redis 缓存管理器,实现 CacheManager 接口,注意到,这个接口的实现重写了一个 getCache 方法,而这个方法的参数其实就是缓存的名字。因此我们在构造缓存时将字符串传入:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
package org.koorye.component;

import org.apache.shiro.cache.Cache;
import org.apache.shiro.cache.CacheException;
import org.apache.shiro.cache.CacheManager;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class RedisCacheManager implements CacheManager {
@Autowired
private RedisCache<Object, Object> redisCache;

@Override
public <K, V> Cache<K, V> getCache(String s) throws CacheException {
redisCache.setCacheName(s);
return (Cache<K, V>) redisCache;
}
}

修改 Shiro 配置类

由于使用了 Autowired 自动注入,我们不能再 new 的方式得到对象,需要交予 Spring 容器管理。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
@Autowired
private RedisCacheManager redisCacheManager;

@Bean(name = "realm")
public UserRealm userRealm() {
HashedCredentialsMatcher matcher = new HashedCredentialsMatcher();
matcher.setHashAlgorithmName("md5");
matcher.setHashIterations(1024);

UserRealm userRealm = new UserRealm();
userRealm.setCredentialsMatcher(matcher);

userRealm.setCacheManager(redisCacheManager);
userRealm.setCachingEnabled(true);
userRealm.setAuthenticationCachingEnabled(true);
userRealm.setAuthorizationCachingEnabled(true);
userRealm.setAuthenticationCacheName("authentication_cache");
userRealm.setAuthorizationCacheName("authorization_cache");

return userRealm;
}

测试

尝试访问 http://localhost:8080/api/login?username=koorye&password=123456

在这里插入图片描述

多次访问之后:

1
[ INFO ] User koorye was found.

只查表一次,说明记录被缓存。