上一期我们实现了登录验证,然而,每次登录 Shiro
都需要去查询一次数据库,而查询数据库是极其耗费资源的,因此,我们需要引入缓存来减小资源开支。
Shiro 的登录验证机制
我们给 Service 层加入日志打印,再行测试:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 @Service public class UserServiceImpl implements UserService { @Autowired private UserDao userDao; @Override public void save (User user) { System.out.println("[ INFO ] User " + user.getUsername() + " saved." ); userDao.save(user); } @Override public User getUserByUsername (String username) { System.out.println("[ INFO ] User " + username + " was found." ); return userDao.findByUsername(username); } }
运行:
1 2 3 [ INFO ] User koorye was found. [ INFO ] User koorye was found. [ INFO ] User koorye was found.
结果发现,每刷新一次登录页面,Shiro
都会查询一次数据库,我们有必要使用缓存来减小开支。
Shiro 的默认缓存机制
Shiro 默认使用 EhCache 完成缓存。
导入依赖
1 2 3 4 5 <dependency > <groupId > org.apache.shiro</groupId > <artifactId > shiro-ehcache</artifactId > <version > 1.5.3</version > </dependency >
配置 Realm
在配置类中修改 Realm 的配置,增加缓存管理器:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 @Bean(name = "realm") public UserRealm userRealm () { HashedCredentialsMatcher matcher = new HashedCredentialsMatcher (); matcher.setHashAlgorithmName("md5" ); matcher.setHashIterations(1024 ); UserRealm userRealm = new UserRealm (); userRealm.setCredentialsMatcher(matcher); userRealm.setCacheManager(new EhCacheManager ()); userRealm.setCachingEnabled(true ); userRealm.setAuthenticationCachingEnabled(true ); userRealm.setAuthorizationCachingEnabled(true ); userRealm.setAuthenticationCacheName("authentication_cache" ); userRealm.setAuthorizationCacheName("authorization_cache" ); return userRealm; }
到这里 Shiro 的缓存就配置完成,非常简单。
我们来测试一下:
1 [ INFO ] User koorye was found.
无论登录页面刷新多少次,除了第一次需要访问数据库之外,只要用户没有登出,其余登录操作只需访问缓存,而不用访问数据库。
Redis 实现缓存
EhCache 可以非常容易的实现 Shiro
缓存,然而它存在一些缺陷,比如不能持久化、数据不容易查看等。
因此,将 EhCache 换成 Redis 是一种很好的方案。
导入依赖
1 2 3 4 5 <dependency > <groupId > org.springframework.boot</groupId > <artifactId > spring-boot-starter-data-redis-reactive</artifactId > </dependency >
修改配置
如果你的 Redis 设有密码,需要配置密码:
1 2 3 spring.redis.port =6379 spring.redis.password =root spring.redis.database =0
配置 Redis 序列化
新建一个 RedisConfig 配置类:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 package org.koorye.config;import org.springframework.boot.autoconfigure.AutoConfigureAfter;import org.springframework.context.annotation.Bean;import org.springframework.context.annotation.Configuration;import org.springframework.data.redis.connection.RedisConnectionFactory;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.data.redis.serializer.StringRedisSerializer;@Configuration @AutoConfigureAfter(ShiroLifecycleBeanPostProcessorConfig.class) public class RedisConfig { @Bean(name = "redis") public RedisTemplate<String, Object> redisTemplate (RedisConnectionFactory redisConnectionFactory) { RedisTemplate<String, Object> redisTemplate = new RedisTemplate <>(); redisTemplate.setConnectionFactory(redisConnectionFactory); redisTemplate.setKeySerializer(new StringRedisSerializer ()); redisTemplate.setHashKeySerializer(new StringRedisSerializer ()); return redisTemplate; } }
Key 使用字符串序列化,Value 不配置,代表默认序列化。
要实现默认序列化,我们需要继承序列化 Serializable 接口:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 @NoArgsConstructor @Getter @Setter @Accessors(chain = true) @Entity @Table(name = "t_user") public class User implements Serializable { @Id @GeneratedValue(strategy = GenerationType.IDENTITY) @Column(name = "id") private int id; @Column(name = "username") private String username; @Column(name = "password") private String password; @Override public String toString () { return "ID: " + id + ", username: " + username + ", password: " + password; } }
同时,Shiro 的盐并不具有序列化功能,我们需要重新写一个盐。
复制 SimpleByteSource 的所有代码,修改类名,并继承序列化接口。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 package org.koorye.component;import java.io.File;import java.io.InputStream;import java.io.Serializable;import java.util.Arrays;import org.apache.shiro.codec.Base64;import org.apache.shiro.codec.CodecSupport;import org.apache.shiro.codec.Hex;import org.apache.shiro.util.ByteSource;public class SerializableByteSource implements ByteSource , Serializable { private final byte [] bytes; private String cachedHex; private String cachedBase64; public SerializableByteSource (byte [] bytes) { this .bytes = bytes; } public SerializableByteSource (char [] chars) { this .bytes = CodecSupport.toBytes(chars); } public SerializableByteSource (String string) { this .bytes = CodecSupport.toBytes(string); } public SerializableByteSource (ByteSource source) { this .bytes = source.getBytes(); } public SerializableByteSource (File file) { this .bytes = (new SerializableByteSource .BytesHelper()).getBytes(file); } public SerializableByteSource (InputStream stream) { this .bytes = (new SerializableByteSource .BytesHelper()).getBytes(stream); } public static boolean isCompatible (Object o) { return o instanceof byte [] || o instanceof char [] || o instanceof String || o instanceof ByteSource || o instanceof File || o instanceof InputStream; } public byte [] getBytes() { return this .bytes; } public boolean isEmpty () { return this .bytes == null || this .bytes.length == 0 ; } public String toHex () { if (this .cachedHex == null ) { this .cachedHex = Hex.encodeToString(this .getBytes()); } return this .cachedHex; } public String toBase64 () { if (this .cachedBase64 == null ) { this .cachedBase64 = Base64.encodeToString(this .getBytes()); } return this .cachedBase64; } public String toString () { return this .toBase64(); } public int hashCode () { return this .bytes != null && this .bytes.length != 0 ? Arrays.hashCode(this .bytes) : 0 ; } public boolean equals (Object o) { if (o == this ) { return true ; } else if (o instanceof ByteSource) { ByteSource bs = (ByteSource)o; return Arrays.equals(this .getBytes(), bs.getBytes()); } else { return false ; } } private static final class BytesHelper extends CodecSupport { private BytesHelper () { } public byte [] getBytes(File file) { return this .toBytes(file); } public byte [] getBytes(InputStream stream) { return this .toBytes(stream); } } }
于是我们的 Realm 加盐可以更换成:
1 2 3 4 5 return new SimpleAuthenticationInfo ( authenticationToken.getPrincipal(), user.getPassword(), new SerializableByteSource ("koorye_love_md5" ), this .getName());
编写 Service 层
首先来实现一些 Redis 的功能。
接口:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 package org.koorye.service;import java.util.Collection;import java.util.Set;public interface RedisService { void putHash (String hashName, String key, Object value) ; Object getHashValueByKey (String hashName, String key) ; void removeHashKey (String hashName, String key) ; void removeHash (String hashName) ; int sizeHash (String hashName) ; Set<Object> keysHash (String hashName) ; Collection<Object> valuesHash (String hashName) ; }
实现类:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 package org.koorye.service;import org.springframework.context.annotation.Lazy;import org.springframework.data.redis.core.RedisTemplate;import org.springframework.stereotype.Service;import javax.annotation.Resource;import java.util.Collection;import java.util.Set;@Service @Lazy public class RedisServiceImpl implements RedisService { @Resource(name = "redis") private RedisTemplate<String, Object> redisTemplate; @Override public void putHash (String hashName, String key, Object value) { redisTemplate.opsForHash().put(hashName, key, value); } @Override public Object getHashValueByKey (String hashName, String key) { return redisTemplate.opsForHash().get(hashName, key); } @Override public void removeHashKey (String hashName, String key) { redisTemplate.opsForHash().delete(hashName, key); } @Override public void removeHash (String hashName) { redisTemplate.delete(hashName); } @Override public int sizeHash (String hashName) { return redisTemplate.opsForHash().size(hashName).intValue(); } @Override public Set<Object> keysHash (String hashName) { return redisTemplate.opsForHash().keys(hashName); } @Override public Collection<Object> valuesHash (String hashName) { return redisTemplate.opsForHash().values(hashName); } }
配置 Redis 缓存
我们自定义的缓存需要实现 Shiro 提供的 Cache<K, V>
接口。
我们来实现一个无参构造和有参构造,并通过 RedisTemplate 实现缓存的
CRUD 操作,存储时采用哈希表。
表名:缓存的名字
键:缓存的用户名
值:缓存的信息
为什么需要一个参数为 String
的有参构造呢?这里的配置我们稍后可以看到:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 package org.koorye.component;import lombok.Getter;import lombok.Setter;import org.apache.shiro.cache.Cache;import org.apache.shiro.cache.CacheException;import org.koorye.service.RedisServiceImpl;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Repository;import java.util.Collection;import java.util.Set;@Repository @SuppressWarnings(value = "unchecked") @Getter @Setter public class RedisCache <K, V> implements Cache <K, V> { @Autowired private RedisServiceImpl redisService; private String cacheName; @Override public V get (K k) throws CacheException { return (V) redisService.getHashValueByKey(cacheName, k.toString()); } @Override public V put (K k, V v) throws CacheException { redisService.putHash(cacheName, k.toString(), v); return v; } @Override public V remove (K k) throws CacheException { V value = (V) redisService.getHashValueByKey(cacheName, k.toString()); redisService.removeHashKey(cacheName, k.toString()); return value; } @Override public void clear () throws CacheException { redisService.removeHash(cacheName); } @Override public int size () { return redisService.sizeHash(cacheName); } @Override public Set<K> keys () { return (Set<K>) redisService.keysHash(cacheName); } @Override public Collection<V> values () { return (Collection<V>) redisService.valuesHash(cacheName); } }
配置 Redis 缓存管理器
接下来自定义 Redis 缓存管理器,实现 CacheManager
接口,注意到,这个接口的实现重写了一个 getCache
方法,而这个方法的参数其实就是缓存的名字。因此我们在构造缓存时将字符串传入:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 package org.koorye.component;import org.apache.shiro.cache.Cache;import org.apache.shiro.cache.CacheException;import org.apache.shiro.cache.CacheManager;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Component;@Component public class RedisCacheManager implements CacheManager { @Autowired private RedisCache<Object, Object> redisCache; @Override public <K, V> Cache<K, V> getCache (String s) throws CacheException { redisCache.setCacheName(s); return (Cache<K, V>) redisCache; } }
修改 Shiro 配置类
由于使用了 Autowired 自动注入,我们不能再 new
的方式得到对象,需要交予 Spring 容器管理。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 @Autowired private RedisCacheManager redisCacheManager;@Bean(name = "realm") public UserRealm userRealm () { HashedCredentialsMatcher matcher = new HashedCredentialsMatcher (); matcher.setHashAlgorithmName("md5" ); matcher.setHashIterations(1024 ); UserRealm userRealm = new UserRealm (); userRealm.setCredentialsMatcher(matcher); userRealm.setCacheManager(redisCacheManager); userRealm.setCachingEnabled(true ); userRealm.setAuthenticationCachingEnabled(true ); userRealm.setAuthorizationCachingEnabled(true ); userRealm.setAuthenticationCacheName("authentication_cache" ); userRealm.setAuthorizationCacheName("authorization_cache" ); return userRealm; }
测试
尝试访问 http://localhost:8080/api/login?username=koorye&password=123456 :
在这里插入图片描述
多次访问之后:
1 [ INFO ] User koorye was found.
只查表一次,说明记录被缓存。